14 research outputs found

    Rationalizing Tight Ligand Binding through Cooperative Interaction Networks

    No full text
    Small modifications of the molecular structure of a ligand sometimes cause strong gains in binding affinity to a protein target, rendering a weakly active chemical series suddenly attractive for further optimization. Our goal in this study is to better rationalize and predict the occurrence of such interaction hot-spots in receptor binding sites. To this end, we introduce two new concepts into the computational description of molecular recognition. First, we take a broader view of noncovalent interactions and describe protein–ligand binding with a comprehensive set of favorable and unfavorable contact types, including for example halogen bonding and orthogonal multipolar interactions. Second, we go beyond the commonly used pairwise additive treatment of atomic interactions and use a small world network approach to describe how interactions are modulated by their environment. This approach allows us to capture local cooperativity effects and considerably improves the performance of a newly derived empirical scoring function, ScorpionScore. More importantly, however, we demonstrate how an intuitive visualization of key intermolecular interactions, interaction networks, and binding hot-spots supports the identification and rationalization of tight ligand binding

    Fluorination Patterning: A Study of Structural Motifs That Impact Physicochemical Properties of Relevance to Drug Discovery

    No full text
    The synthesis of a collection of 3-substituted indole derivatives incorporating partially fluorinated <i>n</i>-propyl and <i>n</i>-butyl groups is described along with an in-depth study of the effects of various fluorination patterns on their properties, such as lipophilicity, aqueous solubility, and metabolic stability. The experimental observations confirm predictions of a marked lipophilicity decrease imparted by a <i>vic</i>-difluoro unit when compared to the <i>gem</i>-difluoro counterparts. The data involving the comparison of the two substitution patterns is expected to benefit molecular design in medicinal chemistry and, more broadly, in life as well as materials sciences

    2<i>H</i>‑1,2,3-Triazole-Based Dipeptidyl Nitriles: Potent, Selective, and Trypanocidal Rhodesain Inhibitors by Structure-Based Design

    No full text
    Macrocyclic inhibitors of rhodesain (RD), a parasitic cysteine protease and drug target for the treatment of human African trypanosomiasis, have shown low metabolic stability at the macrocyclic ether bridge. A series of acyclic dipeptidyl nitriles was developed using structure-based design (PDB ID: 6EX8). The selectivity against the closely related cysteine protease human cathepsin L (hCatL) was substantially improved, up to 507-fold. In the S2 pocket, 3,4-dichlorophenylalanine residues provided high trypanocidal activities. In the S3 pocket, aromatic residues provided enhanced selectivity against hCatL. RD inhibition (<i>K</i><sub>i</sub> values) and <i>in vitro</i> cell-growth of <i>Trypanosoma brucei rhodesiense</i> (IC<sub>50</sub> values) were measured in the nanomolar range. Triazole-based ligands, obtained by a safe, gram-scale flow production of ethyl 1<i>H</i>-1,2,3-triazole-4-carboxylate, showed excellent metabolic stability in human liver microsomes and <i>in vivo</i> half-lives of up to 1.53 h in mice. When orally administered to infected mice, parasitaemia was reduced but without complete removal of the parasites

    Practical Synthesis of MDM2 Antagonist RG7388. Part 2: Development of the Cu(I) Catalyzed [3 + 2] Asymmetric Cycloaddition Process for the Manufacture of Idasanutlin

    No full text
    A concise catalytic asymmetric synthesis of idasanutlin (<b>1</b>) was developed in which the key pyrrolidine core, containing four contiguous stereocenters, was constructed via a Ag/MeOBIPHEP promoted [3 + 2] cycloaddition reaction. Further development of the [3 + 2] cycloaddition reaction resulted in an improvement in diastereoselectivity and enantioselectivity by changing the catalyst system to Cu­(I)/BINAP. While producing equivalent high quality API, the copper­(I) catalyzed process not only increased the overall yield but also demonstrated benefit with respect to cycle times, waste streams, and processability. The optimized copper­(I) catalyzed process has been used to prepare more than 1500 kg of idasanutlin (<b>1</b>)

    2<i>H</i>‑1,2,3-Triazole-Based Dipeptidyl Nitriles: Potent, Selective, and Trypanocidal Rhodesain Inhibitors by Structure-Based Design

    No full text
    Macrocyclic inhibitors of rhodesain (RD), a parasitic cysteine protease and drug target for the treatment of human African trypanosomiasis, have shown low metabolic stability at the macrocyclic ether bridge. A series of acyclic dipeptidyl nitriles was developed using structure-based design (PDB ID: 6EX8). The selectivity against the closely related cysteine protease human cathepsin L (hCatL) was substantially improved, up to 507-fold. In the S2 pocket, 3,4-dichlorophenylalanine residues provided high trypanocidal activities. In the S3 pocket, aromatic residues provided enhanced selectivity against hCatL. RD inhibition (<i>K</i><sub>i</sub> values) and <i>in vitro</i> cell-growth of <i>Trypanosoma brucei rhodesiense</i> (IC<sub>50</sub> values) were measured in the nanomolar range. Triazole-based ligands, obtained by a safe, gram-scale flow production of ethyl 1<i>H</i>-1,2,3-triazole-4-carboxylate, showed excellent metabolic stability in human liver microsomes and <i>in vivo</i> half-lives of up to 1.53 h in mice. When orally administered to infected mice, parasitaemia was reduced but without complete removal of the parasites

    Prospective Evaluation of Free Energy Calculations for the Prioritization of Cathepsin L Inhibitors

    No full text
    Improving the binding affinity of a chemical series by systematically probing one of its exit vectors is a medicinal chemistry activity that can benefit from molecular modeling input. Herein, we compare the effectiveness of four approaches in prioritizing building blocks with better potency: selection by a medicinal chemist, manual modeling, docking followed by manual filtering, and free energy calculations (FEP). Our study focused on identifying novel substituents for the apolar S2 pocket of cathepsin L and was conducted entirely in a prospective manner with synthesis and activity determination of 36 novel compounds. We found that FEP selected compounds with improved affinity for 8 out of 10 picks compared to 1 out of 10 for the other approaches. From this result and other additional analyses, we conclude that FEP can be a useful approach to guide this type of medicinal chemistry optimization once it has been validated for the system under consideration

    Prospective Evaluation of Free Energy Calculations for the Prioritization of Cathepsin L Inhibitors

    No full text
    Improving the binding affinity of a chemical series by systematically probing one of its exit vectors is a medicinal chemistry activity that can benefit from molecular modeling input. Herein, we compare the effectiveness of four approaches in prioritizing building blocks with better potency: selection by a medicinal chemist, manual modeling, docking followed by manual filtering, and free energy calculations (FEP). Our study focused on identifying novel substituents for the apolar S2 pocket of cathepsin L and was conducted entirely in a prospective manner with synthesis and activity determination of 36 novel compounds. We found that FEP selected compounds with improved affinity for 8 out of 10 picks compared to 1 out of 10 for the other approaches. From this result and other additional analyses, we conclude that FEP can be a useful approach to guide this type of medicinal chemistry optimization once it has been validated for the system under consideration

    Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors

    No full text
    Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei (<i>T</i>. <i>b</i>.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors (<i>K</i><sub>i</sub> < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC<sub>50</sub> < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys–SOH) during crystallization. The P-glycoprotein efflux ratio was measured and the in vivo brain penetration in rats determined. When tested in vivo in acute HAT model, the compounds permitted up to 16.25 (vs 13.0 for untreated controls) mean days of survival

    Discovery of Fluoromethylketone-Based Peptidomimetics as Covalent ATG4B (Autophagin-1) Inhibitors

    No full text
    ATG4B or autophagin-1 is a cysteine protease that cleaves ATG8 family proteins. ATG4B plays essential roles in the autophagosome formation and the autophagy pathway. Herein we disclose the design and structural modifications of a series of fluoromethylketone (FMK)-based peptidomimetics as highly potent ATG4B inhibitors. Their structure–activity relationship (SAR) and protease selectivity are also discussed

    Discovery of 4‑Aryl-5,6,7,8-tetrahydroisoquinolines as Potent, Selective, and Orally Active Aldosterone Synthase (CYP11B2) Inhibitors: In Vivo Evaluation in Rodents and Cynomolgus Monkeys

    No full text
    Inappropriately high levels of aldosterone are associated with many serious medical conditions, including renal and cardiac failure. A focused screen hit has been optimized into a potent and selective aldosterone synthase (CYP11B2) inhibitor with in vitro activity against rat, mouse, human, and cynomolgus monkey enzymes, showing a selectivity factor of 160 against cytochrome CYP11B1 in the last species. The novel tetrahydroisoquinoline compound (+)-(<i>R</i>)-<b>6</b> selectively reduced aldosterone plasma levels in vivo in a dose-dependent manner in db/db mice and cynomolgus monkeys. The selectivity against CYP11B1 as predicted by cellular inhibition data and free plasma fraction translated well to Synacthen challenged cynomolgus monkeys up to a dose of 0.1 mg kg<sup>–1</sup>. This compound, displaying good in vivo potency and selectivity in mice and monkeys, is ideally suited to perform mechanistic studies in relevant rodent models and to provide the information necessary for translation to non-human primates and ultimately to man
    corecore